Automated Discovery of Novel Anomalous Patterns

نویسندگان

  • Edward McFowland
  • Daniel B. Neill
  • Jeff Schneider
  • Roy Maxion
چکیده

We propose Discovering Novel Anomalous Patterns (DAP), a new method for continual and automated discovery of anomalous patterns in general datasets. Currently, general methods for anomalous pattern detection attempt to identify data patterns that are unexpected as compared to “normal” system behavior. We propose a novel approach for discovering data patterns that are unexpected given a profile of previously known, both normal and abnormal, system behavior. This enables the DAP algorithm to identify previously unknown data patterns, add these newly discovered patterns to the profile of “known” system behavior, and continue to discover novel (unknown) patterns. We evaluate the performance of DAP in two domains of computer system intrusion detection (network intrusion detection and masquerade detection), demonstrating that DAP can successfully discover and characterize relevant patterns for these two tasks. As compared to the current state of the art, DAP provides a substantially improved ability to discover novel patterns in massive multivariate datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey on Perception of People Regarding Utilization of Computer Science & Information Technology in Manipulation of Big Data, Disease Detection & Drug Discovery

this research explores the manipulation of biomedical big data and diseases detection using automated computing mechanisms. As efficient and cost effective way to discover disease and drug is important for a society so computer aided automated system is a must. This paper aims to understand the importance of computer aided automated system among the people. The analysis result from collected da...

متن کامل

Reasoning and Knowledge Acquisition Framework for 5G Network Analytics

Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for m...

متن کامل

A Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept

Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...

متن کامل

Semantic-based Anomalous Pattern Discovery in Moving Object Trajectories

In this work, we investigate a novel semantic approach for pattern discovery in trajectories that, relying on ontologies, enhances object movement information with event semantics. The approach can be applied to the detection of movement patterns and behaviors whenever the semantics of events occurring along the trajectory is, explicitly or implicitly, available. In particular, we tested it aga...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014